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Abstract
Repeated measures designs are widely used in practice to increase power, reduce

sample size, and increase efficiency in data collection. Correlation between repeated

measurements is one of the first research questions that needs to be addressed in a

repeated-measure study. In addition to an estimate for correlation, confidence

interval should be computed and reported for statistical inference. The asymptotic

interval based on the delta method is traditionally calculated due to its simplicity.

However, this interval is often criticized for its unsatisfactory performance with

regards to coverage and interval width. Bootstrap could be utilized to reduce the

interval width, and the widely used bootstrap intervals include the percentile

interval, the bias-corrected interval, and the bias-corrected with acceleration inter-

val. Wilcox (Comput Stat Data Anal 22:89–98,1996) suggested a modified per-

centile interval with the interval levels adjusted by sample size to have the coverage

probability close to the nominal level. For a study with repeated measures, more

parameters in addition to sample size would affect the coverage probability. For

these reasons, we propose modifying the percentiles in the percentile interval to

guarantee the coverage probability based on simulation studies. We analyze the

correlation between imaging volumes and memory scores from the Alzheimer’s

Disease Neuroimaging Initiative (ADNI) study to illustrate the application of the

considered intervals. The proposed interval is exact with the coverage probability

guaranteed, and is recommended for use in practice.
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1 Introduction

Correlation between two measures has been studied for decades, and Pearson’s

correlation coefficient is traditionally used to quantify the degree to which two

variables are related to each other (Pearson 1900; Casella and Berger 2002). The

sign of Pearson’s correlation shows the direction of relationship between two

continuous measures. The range of Pearson’s correlation is from -1 to 1. A value of

zero indicates that there is no linear relationship between two measures.

In Pearson’s correlation, each measurement is only recorded once for each

participant. For a study with repeated measures, each measurement is collected

multiple times with some correlation between these observations. The correlation

between two measures is the parameter of interest in this article. When data from a

repeated-measure study are analyzed by using the Pearson’s method, the outcomes

from the same patient are assumed to be independent from each other, which is not a

reasonable assumption. Data from the same patient at different visits are correlated,

not independent. Ignoring the dependency of measures at multiple visits from the

same patient, the computed type I error rate could be much larger than the nominal

level (Aarts et al. 2014; Bakdash and Marusich 2017). In addition, Pearson’s

correlation is often used to measure the correlation between two outcomes in a

cross-sectional study, not a repeated-measure study. Therefore, it is not appropriate

to use Pearson’s correlation for repeated measures. In contemporary clinical trials,

participants are often scheduled for multiple visits with one of the aims to study the

trajectory of important outcomes.

When repeated measures are collected, one of the very first steps in data analysis

is to estimate the correlation between these measures. Bland and Altman (1995a, b)

developed a few methods to compute correlation for repeated measures by

partialling out the visit effect. Lam et al. (1999) proposed using a linear mixed

model to compute the longitudinal correlation based on maximum likelihood

method using a special software. Later, Hamlett et al. (2004) implemented the

mixed model using the commercially available software (SAS) to compute

correlation under the assumption of a compound symmetric (CS) correlation

structure. Roy (2006) computed correlation under the correlation matrix of

autoregressive of order one. She found that the type of correlation matrix could

affect the statistical inference (Crowder 1995).

In addition to estimates for correlation in the presence of repeated measures, it is

also important to provide confidence intervals for statistical inference. Irimata et al.

(2018) compared five methods to estimate correlation and their associated

confidence intervals using a pharmacokinetics data with 18 subjects. They

recommended the mixed model approach and the corresponding confidence

interval. They derived the standard deviation of correlation under the CS correlation

structure using the delta method to construct an asymptotic confidence interval.

They also considered the bias-corrected (BC) bootstrap confidence interval.

Bootstrap methods are computationally intensive as compared to the traditional

statistical methods. But bootstrap is an efficient method to compute the empirical

distribution of the parameter of interest that can then be utilized to construct
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confidence intervals. The SAS macros to compute the asymptotic interval and the

BC interval were attached to the article by Irimata et al. (2018) who only compared

their performances using that pharmacokinetics data set. In addition to the BC

interval, the percentile bootstrap interval and the bias-corrected with acceleration

(BCa) bootstrap confidence interval are also popularly used in practice.

When sample size is small to medium (e.g., less than 100), the aforementioned

confidence intervals may have unsatisfactory performance with regards to coverage

probability. For this reason, Wilcox (2011) suggested adjusting the nominal level by

the sample size in a regression setting (Wilcox 1996). We adopt his approach for

correlation in the presence of repeated measures where more parameters (sample

size, variance, covariance, and mean) could affect the coverage probability. We

conduct extensive numerical studies to identify the modified percentile that

guarantees the coverage probability and has the shortest width.

We organize this article as follows. In Sect. 2, we briefly introduce the mixed

method for correlation for repeated measures and present the existing methods for

confidence intervals. Then, we propose symmetric modified percentile intervals that

guarantee the coverage probability. In Sect. 3, we conduct extensive simulation

studies to compare the performance of the existing methods and the new method.

We illustrate the application of these methods by using data from the Alzheimer’s

Disease Neuroimaging Initiative (ADNI) study in Sect. 4. Finally, we provide some

comments in Sect. 5.

2 Methods

linear mixed models (LMMs) are recommended for correlation estimate in the

presence of repeated measures (Irimata et al. 2018; Hamlett et al. 2004). LMMs are

flexible and efficient to model the correlation structure for a study with repeated

measures. In this article, we assume a CS covariance structure for repeated

measurements as literature suggests (Lam et al. 1999; Hamlett et al. 2004). Suppose

Yi ¼ ðYi1; Yi2; . . .; YitiÞ ¼ ðUi1;Wi1;Ui2;Wi2; . . .;Uiti ;WitiÞ

is a multivariate random vector with a list of variables at each visit for the i�th

participant, where Yij ¼ ðUij;WijÞ is the random vector with two measures for the i-

th participant at the j-th visit. Under the CS correlation structure, the correlation at

each visit is the same. Then Yij is assumed to follow a bivariate normal distribution

(Lam et al. 1999)

Yij �MVN
lUj

lWj

 !
;

r2U rUW
rUW r2W

 ! !
:

It follows that the correlation coefficient for repeated measures is

q ¼ CorrðUij;WijÞ ¼
rUWffiffiffiffiffiffiffiffiffiffiffiffi
r2Ur

2
W

p ; ð1Þ

where the correlation q is between -1 and 1.
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2.1 Correlation estimator from LMM

Lam et al. (1999) introduced the LMM to estimate correlation for repeated

measures based on the maximum likelihood method by using a special software

package. Later, Hamlett et al. (2004) utilized Proc Mixed in SAS instead of the

special software by Lam et al. (1999) for correlation. A general LMM is presented

as

Yi ¼ Xibþ Zibi þ �i;

where Xi and Zi are the design matrices for the fixed effect b and the random effect

bi, respectively. Suppose bi follows N(0, G) and the random error is asymptotically

distributed as N(0, R). Then, we have

Vi ¼ VarðYiÞ ¼ ZiGZ
0

i þ R:

One may find detailed formulas for Xi, b, Zi in the article by Hamlett et al. (2004).

The variance covariance matrices for G and R are

G ¼
r2UqU rUWd

rUWd r2WqW

 !
; R ¼ Iti �

r2Uð1� qUÞ rUWð1� dÞ
rUWð1� dÞ r2Wð1� qWÞ

 !
; ð2Þ

where Iti is the identity matrix with the size of ti, � is the Kronecker product of two

matrices, qU ¼ CorrðUij;Uij
0 Þ is the correlation within U, qW ¼ CorrðWij;Wij

0 Þ is

the correlation within W, and d ¼ CorrðUij;Wij
0 Þ=CorrðUij;WijÞ. The value of d

measures the degree of correlation between measures at different times. The

quantities G and R can be estimated from the random and repeated statements in the

Proc Mixed.

It follows that the elements in Eq. (1) can be expressed as

r2U ¼ G11 þ R11; r
2
W ¼ G22 þ R22; and rUW ¼ G12 þ R12:

Therefore, correlation for repeated measures, q, in Eq. (1) can be rewritten as a

function of six parameters,

q ¼ /ðsÞ ¼ G12 þ R12ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðG11 þ R11ÞðG22 þ R22Þ

p ;

where s ¼ ðG11;G22;G12;R11;R22;R12Þ.

2.2 Asymptotic confidence interval

In order to calculate a confidence interval for q, one has to estimate its standard

deviation. Asymptotic confidence intervals based on the limiting distribution of the

correlation coefficient are traditionally used for statistical inference. The delta

method utilizes the first order Taylor expansion to estimate its variance as
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VarðqÞ ¼ o/
os

� �0

VarðsÞ o/
os

;

where o/
os ¼ ð o/

oG11
; o/
oG22

; o/
oG12

; o/
oR11

; o/
oR22

; o/
oR12

Þ
0
is the partial derivative vector, and

Var(s) is the variance-covariance matrix of s that can be estimated from the Asycov

option in the Proc Mixed (Hamlett et al. 2004). The (1� a)% confidence interval

for q is then computed as

q̂� z1�a=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Varðq̂Þ

p
; q̂þ z1�a=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Varðq̂Þ

p� �
; ð3Þ

where z1�a=2 is the 1� a=2 percentile of the standard normal distribution, e.g.,

z1�a=2 ¼ 1:96 when a ¼ 0:05. We refer this interval as the Asy interval. Irimata

et al. (2018) developed a SAS macro (named MMCorr-NormalApprox) to compute

the asymptotic confidence interval for the longitudinal correlation.

2.3 Bootstrap confidence intervals

Bootstrap confidence intervals are computationally intensive as compared to the

traditional intervals. As more computational resources are available to statisticians

and biostatisticians for data analysis, bootstrap intervals become feasible to be

applied in practice to improve the performance of confidence intervals for

correlation in the presence of repeated measures.

Suppose a study has n participants and each participant has m scheduled visits. In

order to avoid breaking down the correlation within each participant, we bootstrap

samples at the participant level. Suppose d samples are randomly selected from n
participants with replacement. For each bootstrap sample set with the size of d, a
LMM is used to fit the data, and q is computed from the fitted model. Suppose the

bootstrapping procedure is repeated by B times. Then, the computed correlations

from this bootstrap procedure are:

XðqÞ ¼ ðq̂1; q̂2; . . .; q̂BÞ;

where XðqÞ is the sample space of all the q values. The sample space XðqÞ is used
as the empirical distribution of q to compute confidence intervals. Suppose

ðq̂ð1Þ; q̂ð2Þ; . . .; q̂ðBÞÞ is the ordered vector of XðqÞ from the smallest correlation to the

largest value. The bootstrap confidence interval based on percentiles are defined as

ðq̂Bal ; q̂BauÞ;

where al and au are the lower and upper percentiles.

2.3.1 Percentile interval

The first bootstrap interval is the traditional percentile interval with
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al ¼ a=2 and au ¼ 1� a=2: ð4Þ

When a ¼ 0:05, al is 0.025 and au is 0.975. We refer this interval as the PCT

interval.

2.3.2 BC and BCa intervals

Efron (1985) and Efron and Tibshirani (1994) proposed the bootstrap confidence

interval by adjusting the lower and upper percentiles for both bias and skewness in

the bootstrap distribution. The bias correction effect is estimated from the

proportion of qis being less than q̂ estimated from the observed data:

ẑ ¼ U�1

PB
i¼1 Iðq̂i\q̂Þ

B

 !
;

where Uð:Þ is the cumulative distribution function of the standard normal distri-

bution. The acceleration factor to adjust the skewness is calculated by using the

jackknife approach. Let q̂ð�iÞ be the estimate of q after removing the i� th par-

ticipant from the observed data, i ¼ 1; 2; . . .; n. The average of these estimates is

q̂J ¼
Pn

i¼1 q̂ð�iÞ=n. The acceleration factor is computed as

â ¼
Pn

i¼1ðq̂J � q̂ð�iÞÞ3

6½
Pn

i¼1ðq̂J � q̂ð�iÞÞ2�3=2
:

The second bootstrap interval is bias correlated with acceleration, with the lower

and upper percentiles as

al ¼ U ẑ0 þ
ẑ0 þ Za=2

1� â ẑ0 þ Za=2
� �

 !
and au ¼ U ẑ0 þ

ẑ0 þ Z1�a=2

1� âðẑ0 þ Z1�a=2Þ

� �
: ð5Þ

This interval is well known as the BCa interval. The BCa interval becomes the BC

interval when the acceleration factor is zero, â ¼ 0. Both the BCa interval and the

BC interval have been applied to many important statistical problems (Efron and

Tibshirani 1994; Shan et al. 2011).

2.3.3 MP interval

Wilcox (2011, 1996) proposed a modified percentile (MP) interval that makes the

adjustments of the lower and upper percentiles for the confidence interval of the

slope in a linear regression model. The MP percentiles were determined such that

the confidence interval for the slope has the coverage close to the nominal level, but

the MP interval does not guarantee the coverage. The suggested percentiles for a

95% two-sided confidence interval are
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ðal; auÞ ¼

ð7=599; 593=599Þ if n\40;

ð8=599; 592=599Þ if 40� n\80;

ð11=599; 588=599Þ if 80� n\180;

ð14=599; 585=599Þ if 180� n\250;

ð15=599; 584=599Þ if 250� n;

8>>>>>><
>>>>>>:

ð6Þ

where B ¼ 599 is chosen based on the finding from Hall (1986) that ðBþ 1Þ�1
is a

multiple of 1� a. It is obvious that multiple B values could meet that condition, but

simulations with B ¼ 599 have comparable results with larger B values and much

better than those with smaller B values (Wilcox 1996). It should be noted that

B ¼ 599 should be used in the MP intervals to make sure that these intervals are

valid. Sample size is the only factor used to modify the percentiles in that approach.

The MP interval is the same as the PCT interval when n� 250. The nominal level of

the MP approach is much more than 95% when n is small. It should be noticed that

the MP interval has asymmetric lower and upper percentiles when n\80.

2.3.4 SMP interval

For a study with repeated measures, the actual coverage could be affected by

multiple factors, including sample size, variance, covariance, mean, and the number

of visits. The asymmetric intervals in the MP approach when n\80, have only 1/

599 percentile difference as compared to symmetric intervals. In general, symmetric

intervals are preferable in practice. For these reasons, we propose using extensive

simulation studies to identify the symmetric modified percentile (SMP) interval that

guarantees the coverage probability, with the lower percentile and the upper

percentile as

SMPs : ðal; auÞ ¼
s

599
;
599� s
599

� �
;

where s ¼ 1; 2; . . .; 20. Coverage probability is the probability that the computed

confidence intervals from simulated data sets contain the pre-specified q using the

SMPs lower and upper percentiles:

XM
i¼1

I½q 2 CIðijsÞ�
M

;

where CIðijsÞ ¼ ðq̂l�ijs; q̂u�ijsÞ is the confidence interval for q using the i� th

simulated data set, M is the number of simulated data sets, and I(.) is the index

function.

In addition to coverage probability, width of a confidence interval is another

criteria for comparing different intervals. The average width of these confidence

intervals is calculated as
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XM
i¼1

q̂u�ijs � q̂l�ijs
M

:

Since q is between -1 and 1, when the lower limit or the upper limit is beyond the

range, we set the lower limit as -1 or the upper limit as 1. The bootstrap intervals

always have the interval between -1 and 1 because these intervals are percentile

intervals using the estimated q values which are bounded by -1 and 1.

The exact SMP interval is the one that has the shortest width among the SMP

intervals whose coverages are above the nominal level. The SMPj interval contains

SMPj
0
interval when j\j

0
. Among all the SMP intervals have the coverage above

the nominal level (SMP1; SMP2; . . .; SMPk), the SMPk interval is the exact interval.

3 Simulation studies

We conduct extensive simulation studies to identify the SMP interval for correlation

in the presence of repeated measures at the nominal level of 95%. The identified

SMP interval is then compared with other intervals with regards to coverage

probability and width of intervals.

In the simulations studies, we assume that each participant has ti ¼ 4 scheduled

visits. The mean values are

Yi ¼ ðUi1;Wi1;Ui2;Wi2;Ui3;Wi3;Ui4;Wi4Þ ¼ ð2:0; 0:8; 1:9; 0:7; 1:7; 0:6; 1:4; 0:5Þ;

with a decreasing trend over time for both measures, where Uij and Wij are the

outcomes of U and W for the ith participant at the jth visit (j ¼ 1; 2; 3; 4). The
variance-covariance matrix has multiple nuisance parameters that need to be

specified. The longitudinal correlation q ¼ 0:5 is used in the following simulation

studies. Other values in the covariance matrix in Equation (2) are set as: r2U and r2W
from 0.1 to 3; qU and qW from 0.4 to 0.6; and d ¼ 0:4. The covariance rUW in the

variance-covariance matrix can be computed from the aforementioned values as:

q
ffiffiffiffiffiffiffiffiffiffiffiffi
r2Ur

2
W

p
.

For each configuration, we simulate M ¼ 1; 000 data sets when n ¼ 30; 60; and
100. An R function, mvrnorm, from the R package MASS is used to simulate these

data sets. These M ¼ 1; 000 data sets are ready to compute the Asy interval. For

bootstrap confidence intervals, we generate B ¼ 599 bootstrap samples from each

data set. The size of each bootstrap sample is set the same as that of the data set:

d ¼ n.
We first compute the actual coverage of each SMP interval: SMP1, SMP2, . . .,

and SMP20. Figure 1 presents the coverage probability of the proposed SMP

intervals as a function of r2U from 0.6 to 3 when r2W is from 0.1 to 1 given n ¼ 60,

qU ¼ qW ¼ 0:4. The coverage probability of each interval is an increasing function

of r2U when r2W is low, and this increasing trend is slowed down when r2W is higher.

For each configuration, we identify the SMPk interval whose width is the shortest
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(middle), and 1.0 (bottom),
when n ¼ 60, qU ¼ qW ¼ 0:4,
and d ¼ 0:4
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(middle), and 1.0 (bottom),
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and d ¼ 0:4

123

G. Shan et al.



among the ones preserving the coverage. In the case that all SMP intervals do not

guarantee the coverage probability, the SMP1 interval is used in the comparison.

After the exact SMP interval is identified, we compare the coverage probability

of the SMP interval with the existing intervals in Fig. 2. We also present the s
values for the identified SMP interval for each configuration in Table 1. The

coverage probability of the MP interval is close to the nominal level when r2U or r2W
is relatively large. For these configurations, the confidence interval of the MP

approach is much wider than that of the proposed SMP interval, see Fig. 3. Other

existing intervals always have the coverage below the nominal level, which could be

as low as 85% at the nominal level of 95%.

As expected, width of each SMP interval decreases as the sample size goes up

from n ¼ 30 to 100 in Fig. 4 when r2U from 0.6 to 3, r2W ¼ 0:1, and qU ¼ qW ¼ 0:4.
In Fig. 5, we observe that the BC interval, the BCa interval, and the PCT interval

often have narrower intervals than the Asy interval. These four intervals have

narrower intervals than the MP interval and the SMP interval, but these four

intervals do not guarantee the coverage as seen in Fig. 6.

Figure 6 shows the coverage probability comparison between the exact SMP

interval and other 5 intervals. As sample size increases, the actual coverage may go

down when r2W is low. The actual coverage probabilities of the existing 5 intervals

could be as low as 75% in some configurations. The proposed SMP interval always

preserves the level of a confidence interval. When both variances are high, the Asy

interval, the BC interval, the BCa interval and the PCT interval have their coverage

probabilities closer to the nominal level although their coverage probabilities are

still below the nominal level. The MP interval has conservative coverages when

r2U ¼ 3 where a wider interval is observed in Fig. 5 for the width comparison.

We observe similar results when r2W ¼ 0:6 for the width and coverage probability
comparison in Figs. 7 and 8. It can be seen that the MP approach generally have its

coverage probability closer to the nominal level as compared to other existing

intervals. The proposed new SMP interval guarantees the coverage, and the width of

the SMP interval is shorter than that of the MP interval when variances are

relatively large.

Table 1 The optimal SMPs
interval for given r2U and r2W ,
when n ¼ 60, qU ¼ qW ¼ 0:4,
and d ¼ 0:4

r2W r2U s

0.1 0.6 3

0.1 1.0 5

0.1 3.0 11

0.6 0.6 7

0.6 1.0 10

0.6 3.0 10

1.0 0.6 10

1.0 1.0 10

1.0 3.0 11
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Fig. 5 Width comparison
between the proposed SMP
interval and other 5 intervals:
interval width as a function of
sample size n from 30 to 100,

given r2U ¼ 0:6 (top), 1.0

(middle), and 3.0 (bottom),

when r2W ¼ 0:1,
qU ¼ qW ¼ 0:4, and d ¼ 0:4

123

G. Shan et al.



0.
65

0.
75

0.
85

0.
95

Sample size

C
ov

er
ag

e 
pr

ob
ab

ili
ty

30 60 100

Asy interval
BC interval
BCa interval
PCT interval
MP interval
New SMP interval

0.
65

0.
75

0.
85

0.
95

Sample size

C
ov

er
ag

e 
pr

ob
ab

ili
ty

30 60 100

0.
65

0.
75

0.
85

0.
95

Sample size

C
ov

er
ag

e 
pr

ob
ab

ili
ty

30 60 100

Fig. 6 Coverage comparison
between the proposed SMP
interval and other 5 intervals:
coverage probability as a
function of sample size n from

30 to 100, given r2U ¼ 0:6 (top),

1.0 (middle), and 3.0 (bottom),

when r2W ¼ 0:1,
qU ¼ qW ¼ 0:4, and d ¼ 0:4
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Fig. 7 Width comparison
between the proposed SMP
interval and other 5 intervals:
interval width as a function of
sample size n from 30 to 100,

given r2U ¼ 0:6 (top), 1.0

(middle), and 3.0 (bottom),

when r2W ¼ 0:6,
qU ¼ qW ¼ 0:4, and d ¼ 0:4
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Fig. 8 Coverage comparison
between the proposed SMP
interval and other 5 intervals:
coverage probability as a
function of sample size n from

30 to 100, given r2U ¼ 0:6 (top),

1.0 (middle), and 3.0 (bottom),

when r2W ¼ 0:6,
qU ¼ qW ¼ 0:4, and d ¼ 0:4
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4 Example

The ADNI study is a longitudinal study with one of the goals to improve prevalence

and treatment for Alzheimer’s Disease (Cummings 2018; Shan et al. 2018; Shan

2013). We use data of 47 participants who have completed 5 year visits and have

measurements for imaging volumes and memory scores.

By fitting a LMM (Hamlett et al. 2004), we have the estimated correlation of

0.421 between repeated hippocampal volumes and repeated scores on Rey Auditory

Verbal Learning Test (RAVLT) delayed recall. We use the following four steps to

compute exact SMP interval for q.
Step 1 Compute the variance–covariance matrix between repeated hippocampal

volumes and repeated RAVLT delayed recall scores, and their mean vectors.

Step 2 We utilize the variance–covariance matrix and the mean values from Step

1 to simulate M ¼ 1000 data sets with n ¼ 47 in each data set.

Step 3 For each data set, we calculate the 95% SMP intervals using B ¼ 599

bootstrap samples. The M ¼ 1; 000 data sets are simulated using an R function

mvrnorm, and the bootstrapping samples are simulated from SAS procedures.

Step 4 For the proposed intervals SMP1 to SMP20, the SMP9 interval is

identified as the optimal interval with the coverage probability above 95%. Then,

the SMP9 interval is reported as the confidence interval for q.
The SMP9 interval and the existing intervals are presented in Table 2. The Asy

interval has the shortest width, followed by the BC interval, the PCT interval, the

BCa interval, the SMP9 interval, and the MP interval. The lower limit of the MP

interval is the smallest among all these intervals. The lower limits of these intervals

are all above 0, indicating that RAVLT delayed recall scores and hippocampal

volumes are significantly correlated. If the null correlation is set as 0.15, the PM

interval and the SMP interval fail to reject the null hypothesis while other intervals

reject the null hypothesis. The MP interval is asymmetric when sample size is below

80. In this example, the lower limit of the MP interval is from the SMP8 interval,

while the upper limit of the MP interval is from the SMP7 interval. For that reason,

the MP interval is wider than the SMP interval in this example.

Table 2 Confidence interval and its width for the correlation between hippocampal volumes and scores

on Rey Auditory Verbal Learning Test (RAVLT) delayed recall, by using 47 participants from the ADNI

study

Asy CI BC CI BCa CI PCT CI MP CI SMP9 CI

Lower Upper Lower Upper Lower Upper Lower Upper Lower Upper Lower Upper

0.222 0.619 0.196 0.601 0.178 0.596 0.190 0.599 0.143 0.631 0.148 0.616

Width of confidence interval

0.397 0.405 0.418 0.409 0.488 0.468

The correlation is estimated as 0.421
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As pointed out by one of the reviewers, the true value of q and the variance-

covariance matrix are unknown. We use the real data to estimate them by fitting a

linear mixed effects model in Step 1, and then use these estimated values in Step 2

to simulate bootstrapping samples to compute confidence intervals. Theoretically,

one should use the true values to simulate data. Since they are unknown, we used

the estimated values to replace the true values in the simulations, which may

introduce some variations to the coverage probability of confidence intervals.

5 Discussion

In this article, we propose the SMP interval for correlation in the presence of

repeated measures, compared with the traditionally used asymptotic interval, the

PCT interval, the BC interval, the BCa interval, and the MP interval. The developed

software programs are available upon request. In the calculation of these intervals,

the correlation for repeated measures q is estimated from a LMM under the

assumption of a CS covariance structure. This assumption leads to a common q
across different visits. In the case that correlations are not the same at different

visits, suppose qj is the correlation for the j-th visit. When a trend of correlation can

be assumed, one may be interested in testing q1 � q2 � . . .; � qti . Then, the

statements in the SAS Proc mixed should be modified in order to compute the

correlation at each visit.

The confidence interval width could be affected by multiple factors. Increasing

sample sizes would decrease the standard error of the longitudinal correlation. Then,

the confidence interval width becomes shorter. There are several other parameters

affecting the coverage property of confidence intervals for correlation as presented

in simulation studies, including covariance (Shan and Ma 2014). When the

variances are relatively large as compared to the mean values, confidence intervals

become wide enough to have a high coverage probability. Research on limit theory

for the coverage probability of correlation would be an interesting methodology

topic to explore.

In a controlled study, the number of visits for each participant is often the same

(Bernick et al. 2018). For a study with the number of visits being substantially

different from one participant to another, the missing mechanism has to be

investigated before data analysis. When the follow up time is the same within each

center in a multi-center clinical trial, the bootstrap samples may be selected from

each center for confidence interval calculation. The correlation studied in this article

is the one without controlling for other variables. When other measures are

correlated with the two considered measures in calculating the longitudinal

correlation, a partial longitudinal correlation (Shan et al. 2020) is then the parameter

of interest to provide a reliable correlation after removing the effects from other

correlated measures.

When large volumes of data are involved, it can take an inordinately long period

of time to process the data. Often, the same set of computations must be performed

over and over again on different portions of the data. The computations in this paper
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were performed using SAS. One of the lesser-known capabilities of SAS is parallel

processing which can significantly reduce computational time.

Acknowledgements The authors are very grateful to Editor, Associate Editor and two referees for their

insightful comments that help improve the manuscript. Data collection and sharing for this project was

funded by the Alzheimer’s Disease Neuroimaging Initiative (ADNI) (National Institutes of Health Grant

U01 AG024904) and DOD ADNI (Department of Defense award number W81XWH-12-2-0012). ADNI

is funded by the National Institute on Aging, the National Institute of Biomedical Imaging and

Bioengineering, and through generous contributions from the following: AbbVie, Alzheimer’s

Association; Alzheimer’s Drug Discovery Foundation; Araclon Biotech; BioClinica, Inc.; Biogen;

Bristol-Myers Squibb Company; CereSpir, Inc.; Cogstate; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly

and Company; EuroImmun; F. Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.;

Fujirebio; GE Healthcare; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research & Development,

LLC.; Johnson & Johnson Pharmaceutical Research & Development LLC.; Lumosity; Lundbeck; Merck

& Co., Inc.; Meso Scale Diagnostics, LLC.; NeuroRx Research; Neurotrack Technologies; Novartis

Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Takeda Pharmaceutical Company;

and Transition Therapeutics. The Canadian Institutes of Health Research is providing funds to support

ADNI clinical sites in Canada. Private sector contributions are facilitated by the Foundation for the

National Institutes of Health (www.fnih.org). The grantee organization is the Northern California Institute

for Research and Education, and the study is coordinated by the Alzheimer’s Therapeutic Research

Institute at the University of Southern California. ADNI data are disseminated by the Laboratory for

Neuro Imaging at the University of Southern California.

References

Aarts E, Verhage M, Veenvliet JV, Dolan CV, Van Der Sluis S (2014) A solution to dependency: using

multilevel analysis to accommodate nested data. Nat Neurosci 17(4):491–496

Bakdash JZ, Marusich LR (2017) Repeated measures correlation. Front Psychol 8(MAR):456

Bernick C, Zetterberg H, Shan G, Banks S, Blennow K (2018) Longitudinal performance of plasma

neurofilament light and tau in professional fighters: the professional fighters brain health study.

J Neurotrauma 35(20):2351–2356

Bland JM, Altman DG (1995) Calculating correlation coefficients with repeated observations: part 1—

correlation within subjects. BMJ (Clin Res Ed) 310(6977):446

Bland JM, Altman DG (1995) Calculating correlation coefficients with repeated observations: part 2—

correlation between subjects. BMJ 310(6980):446

Casella G, Berger RL (2002) Statistical inference, 2nd edn. Thomson Learning, Belmont, CA

Crowder M (1995) On the use of a working correlation matrix in using generalised linear models for

repeated measures. Biometrika 82(2):407–410

Cummings J (2018) Lessons learned from Alzheimer disease: clinical trials with negative outcomes. Clin

Transl Sci 11(2):147–152

Efron B (1985) Bootstrap confidence intervals for a class of parametric problems. Biometrika

72(1):45–58

Efron B, Tibshirani RJ (1994) An introduction to the bootstrap, softcover edition edn. Monographs on

statistics and applied probability. Chapman and Hall/CRC, London

Hall P (1986) On the number of bootstrap simulations required to construct a confidence interval. Ann

Stat 14(4):1453–1462

Hamlett A, Ryan L, Wolfinger R (2004) On the use of PROC MIXED to estimate correlation in the

presence of repeated measures. In: Proceedings of statistics and data analysis, pp 129–198

Irimata K, Wakim P, Li X (2018) Estimation of correlation coefficient in data with repeated measures. In:

SAS paper, p 2424

Lam M, Webb KA, Donnell DE(1999) Correlation between two variables in repeated measures. In:

Proceedings-American statistical association biometrics section, pp 213–218

Pearson K (1900) On the criterion that a given system of deviations from the probable in the case of a

correlated system of variables is such that it can be reasonably supposed to have arisen from random

sampling. Philos Mag Ser 5 50(302):157–175

123

G. Shan et al.

http://www.fnih.org


Roy A (2006) Estimating correlation coefficient between two variables with repeated observations using

mixed effects model. Biom J Biom Z 48(2):286–301

Shan G (2013) A note on exact conditional and unconditional tests for Hardy–Weinberg equilibrium.

Hum Hered 76(1):10–17

Shan G, Banks S, Miller JB, Ritter A, Bernick C, Lombardo J, Cummings JL (2018) Statistical advances

in clinical trials and clinical research. Alzheimer’s Dement Transl Res Clin Interv 4:366–371

Shan G, Bayram E, Caldwell JZK, Miller JB, Shen JJ, Gerstenberger S (2020) Partial correlation

coefficient for a study with repeated measurements. Stat Biopharm Res. https://doi.org/10.1080/

19466315.2020.1784780

Shan G, Ma C (2014) Exact methods for testing the equality of proportions for binary clustered data from

otolaryngologic studies. Stat Biopharm Res 6(1):115–122

Shan G, Vexler A, Wilding GE, Hutson AD (2011) Simple and exact empirical likelihood ratio tests for

normality based on moment relations. Commun Stat Simul Comput 40(1):129–146

Wilcox Rand (2011) Modern statistics for the social and behavioral sciences: a practical introduction.

CRC Press, Boca Raton

Wilcox RR (1996) Confidence intervals for the slope of a regression line when the error term has

nonconstant variance. Comput Stat Data Anal 22(1):89–98

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps

and institutional affiliations.

Affiliations

Guogen Shan1 • Hua Zhang2 • Jim Barbour3 on behalf of for the Alzheimer’s
Disease Neuroimaging Initiative

& Guogen Shan

guogen.shan@unlv.edu

1 Department of Epidemiology and Biostatistics, School of Public Health, University of Nevada,

Las Vegas, Las Vegas, NV 89154, USA

2 School of Computer and Information Engineering, Zhejiang Gongshang University, Hangzhou,

Zhejiang, China

3 Experian Information Solutions, Inc., Costa Mesa, CA 92626, USA

123

Bootstrap confidence intervals for correlation between...

https://doi.org/10.1080/19466315.2020.1784780
https://doi.org/10.1080/19466315.2020.1784780
http://orcid.org/0000-0001-8690-6599

	Bootstrap confidence intervals for correlation between continuous repeated measures
	Abstract
	Introduction
	Methods
	Correlation estimator from LMM
	Asymptotic confidence interval
	Bootstrap confidence intervals
	Percentile interval
	BC and BCa intervals
	MP interval
	SMP interval


	Simulation studies
	Example
	Discussion
	Acknowledgements
	References




